
A Position-Join Method for
Mining Maximum-Length Repeating Patterns in

Music Databases

Ye-In Chang, Chia-En Li and Tien-Hsiu Chen
Department of Computer Science and Engineering

National Sun Yat-Sen University
Kaohsiung, Taiwan, Republic of China

changyi@cse.nsysu.edu.tw

Abstract—In recent years, the music has become popu-
lar due to the evolution of the technology. Many researches
consider the music object as a continuously discrete note
in time order. Repeating patterns are some subsequences
which appear frequently in the music sequence. It can
be utilized in music classification. Many methods have
been proposed for mining the repeating patterns in music
objects, for example, the M2P (Mining Maximum-length
Patterns) method. It constructs a directed graph and uses
the depth-first search to traverse the graph. It calculates
the pathes by the string matching algorithm to decide
whether they are repeating patterns, and finds out the
maximum-length repeating pattern in a music sequence.
It consumes time in creating too many candidate patterns
and performing the string matching algorithm. Therefore,
in this paper, we propose the PJ (Position-Join) method to
efficiently find out the maximum-length repeating pattern.
From our performance study based on the synthetic data
and real music data, we show that our proposed PJ method
is more efficient than the M2P method.

Index Terms—Data mining, Depth first search, Music
databases, Music sequence, Repeating pattern

I. INTRODUCTION

In recent years, as the number of music databases
grows rapidly, the searching and indexing tech-
niques for content-based audio data are getting
more attention in the area of music databases.
Development of representation types that can satisfy
both semantic as well as efficiency requirements for
retrieval has became more important. The repeating
patterns can constitute a useful representation for
the music data.

A. Music Representation

Recently, issues regarding content-based audio
data retrieval have been studied [13]. The most pop-
ularity content-based audio data is the MIDI (Musi-
cal Instrument Digital Interface) format. According
to the MIDI standard, each note is composed by two
events: Onset events and Offset events. Onset events
means the event of pronounced note, and Offset
events means the event of unpronounced note. They
both contain several parameters: start time, pitch,
velocity, etc.. The pitch values are non-negative
integers smaller than 128. It is based on the standard
keyboard which has 128 keys, and each keystroke
corresponds to a value. For example, if the note
name C is middle C, the corresponding pitch values
are shown in Figure 1. The difference of the start
time of Onset event and the Offset events means the
beat of this note. If each two start time of an event
is nearness, it means that the music object plays on
a fast tempo. In [4, 5, 6], they say that the repeating
pattern is a characteristic representation type, which
can represent the theme of a music. Many researches
in musicology and music psychology consent that
the repeating pattern is one of general features in
music structure modeling [1].

B. The Repeating Patterns

The repeating patterns mean that segments of
the music object that appear repeatedly. In [5],
the repeating pattern is defined as follows: for a
substringX of a sequence of notesS, if X appears
more than once inS, they callX a repeating pattern
of S. As shown in Figure 2, the main melody of

60
61

62
63

64 65
66

67
68

69
70

71 72

Fig. 1. MIDI format pitch value and the related position on piano
keyboards

Fig. 2. An example of MLRP

”Little Bee”, the sequences framed with the solid
line oval is an instance of repeating patterns. In
pop music, a refrain is a typical case of a repeating
pattern. There are many different types of repeating
patterns, such as non-trivial repeating patterns, poly-
phonic repeating patterns [2], approximate repeating
patterns, maximum-length repeating patterns [6],
vertical patterns [3] and geometrical patterns [12].

C. Motivation

Many methods have been proposed to find the re-
peating patterns in the music sequence. For finding
maximum-length repeating patternsi.e., MLRPs.
Karydiset al. proposed the M2P method to find out
the MLRPs specially [6]. The M2P method uses the
music sequence to construct a directed graph. Then,
it uses the depth-first search method to traverse
the graph, and find out the MLRPs. However, the
M2P method has four problems in finding MLRPs.

First, it ignores the characteristics of the graph. If
there are many candidate patterns which need to
be calculated, it costs long time to decide whether
the pattern can match the music sequence or not
by using the string matching algorithm. Second,
the M2P method will generate a huge number of
candidate patterns which need to be calculated their
frequency. It is because the M2P method does not
use the filter method while it traverses the graph.
For example, as shown in Figure 3, if the current
path is ”A→B→C”, the M2P method may still
down traverse the next vertex D, E, when the
length of current path is shorter than the length of
the current MLRP. Even if the path ”A→B→C”
is not a repeating pattern. Third, it costs time to
calculate some similar patterns. Fourth, after the
end of traversing the graph, the M2P method will
have many candidate patterns with their length equal
to the length of MLRP. They store these candidate
patterns in a queue, and each candidate pattern in the
queue needs to be decided whether it is repeating
pattern. If the number of patterns in the queue is
huge, it takes long time in executing the string
matching algorithm.

To avoid these problems, in this paper, we pro-
pose the PJ method to find out the MLRPs in the
music sequence efficiently. We modify the matrix
and the graph by recording some information. Based
on the modified matrix and graph, we use our
proposedp-join method, instead of using the string
matching algorithm, to efficiently calculate the fre-
quency of a pattern. We also use the characteristics
of the p-join method to avoid traversing some path
repeatedly by dynamically modifying the graph.
Moreover, we avoid to add candidate patterns into
a queue. From our performance study based on
the synthetic data and real data, we show that our
proposed PJ method is more efficient than the M2P
method.

The rest of the paper is organized as follows.
Section 2 gives a survey of some methods of mining
repeating patterns. Section 3 presents the proposed
method, the Position-Join method. Section 4 gives
the performance of the proposed method and makes
a comparison between our method and the M2P
method. Finally, we give a conclusion and point out
some future research directions in Section 5.

A

E

CD

B

Fig. 3. Current path ”A→B→C” may need to traverse the next
vertex D or E

II. RELATED WORKS

A repeating pattern is defined as a sequence of
notes which appears more than once in a music
object. Mining repeating patterns is the task of
discovering all these kinds of patterns. Several
methods have been proposed to discover repeating
patterns [10]. Recent research has employed data
mining techniques [5, 7] to efficient discovery of
repeating patterns. In this section, we introduce
some methods of mining repeating patterns,
including Correlative Matrix and String-Join [4,
7] and TRP [11] method for mining non-trivial
repeating patterns, A-PRPD and T-PRPD with Bit-
String [2] method for mining polyphonic repeating
patterns, Ning-Han Liuet al. [8] method for mining
approximate repeating patterns, and the M2P [6]
method for mining maximum-length repeating
patterns. In [4], Hsuet al. have proposed a method
called correlative matrix to discover the non-trivial
repeating pattern. The method is done by using an
upper-triangular matrix to compute the repeating
parts. In Hsuet al.’s method, first, it constructs
the correlative matrix row by row. LetTi,j indicate
the value of the cells located in this matrix at the
conjunction of thei-th row and thej-th column. If
the symbol in the first place of rowi is the same
as the symbol in the first place of columnj, the
value of theTi,j can be computed by the equation
of Ti,j = T(i−1),(j−1) + 1. In [7], Liu et al. proposed
a string-join method andRP-tree to discover the
non-trivial repeating pattern. The method is based
on repeatedly joining two shorter repeating patterns

to form a longer one. They use the form{X,
freq(X), (position1, position2, ...)} to represent
the repeating patterns. In [11], Loet al. proposed
a true suffix tree method to discover the non-
trivial repeating pattern. The method is based on
converting the music sequence into the suffix tree.
In [2], Chiu et al. proposed two methods,A-PRPD
andT-PRPDwith bit-string, to discover polyphonic
repeating patterns. A polyphonic repeating pattern
means that the pattern is consisted of more than
one voice or notes in the stave. In [8], Liuet al.
proposed a method to discover the approximate
repeating pattern (abbreviated asARP), which is
defined in [9]. The maximum-length repeating
pattern [6] is defined as follows: For all repeating
patterns in the music sequenceS, there does not
exist another repeating patternX ′ for which length
of X ′ > length ofX, thenX is a maximum-length
repeating pattern. For example, in a sequence
S = ADBCEFADBEFADCDBCEADBC,
ADBC, EFAD, and DBCE are the maximum-
length repeating patterns. I. Karydiset al. [6]
proposed a Mining Maximum-length Patterns (M2P
for short) method to find the maximum length
repeating pattern. It has two parts as follows:

Step 1: Construct the graph G(V, E). For
input sequenceS = {S1, ..., Sn} with length n, the
first step is to convert the sequence into repeating
patterns of length two, and use these repeating
patterns to construct directed graph.

Step 2: Traverse the graphG(V, E). By using
the depth-first manner, the M2P method traverses
each vertex in GraphG to find out the satisfied
longest path. The method traversesG by searching
for the paths that originate from any of its ver-
tices. While encountering paths, the M2P method
is concerned in identifying only these which are
candidates to become a MLRP. During the traversal,
it keeps track of the pathC that has already been
visited and: (1) has, so far, the maximum length,
and (2) corresponds to a repeating pattern.

III. THE POSITION-JOIN METHOD

In this section, we present the proposed PJ
(Position-Join) method which improves the M2P
method [6].

A. Notations and Definitions

In this subsection, we define some basic notations
and definitions in the PJ method. As in [6], we
consider a music object or a music sequence to be
a sequence of symbols from alphabets containing
discrete elements. In musicology, a music object
is characterized by several features, such as pitch,
chord. We focus on the pitch because it carries the
high relative weight of information. Note that in the
MIDI format, the size of alphabets is 128.

Notation 1: Repeating Patterns In the PJ
method, we consider a music sequence as con-
secutive symbols and the position starting from 0,
as shown in Figure 4, the main melody and the
position. We use the positions to represent a pattern
as {p1, p2, ..., pn : plen}, wherep1 to pn mean the
start positions of the pattern in the music sequence,
and the frequency isn. plen is the length of the
pattern. If the number of frequency is greater than or
equal to two, it is a repeating pattern. For example,
the representation of repeating pattern〈GEE〉 is
{0, 13, 38 : 3} in Figure 4.

Notation 2: (Edge) The edges are represented
the same way as patterns because each edge is a
repeating pattern with length 2. If an edge is formed
by vertex A linking to vertex B, we represent it
as EG(AB) : {p1, p2, ..., pm : 2}, wherep1 to pm

are the start positions of the substring〈AB〉 in the
music sequence, and the frequency ism. The length
is always equal to 2.

Notation 3: (Path) The path is composed by
many edges. We use the formatRP (path) :
{p1, p2, ..., pn : plen} to represent the current path,
wherep1 to pn are the start positions of the substring
in the music sequence, and the frequency isn. plen
is the length of the current path.

Notation 4: (Terminal Edge) In the PJ method,
for each original vertex, if it has been traversed, we
create terminal edges which store the information
of the current path. The terminal edge is used to
avoid that when we traverse the same vertex next
time. We need not to traverse the same path again.
The terminal edge is represented asTR(path) :
{p1, p2, ..., pt : plen}, wherep1 to pt are the start
positions of the substring in the music sequence,
and the frequency ist. plen is the length of the
terminal edge.

G E E F D D C D E F G G G G E E F D D C E G G E D
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

D D D D E F E E E E E F G G E E F D D C E G G C
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Fig. 4. The music sequence of song ”Little Bee”

Definition 1: (MLRPs) The Maximum-Length
Repeating Patterns in the music sequence.

Definition 2: (MLQ) Maximum Length Queue
which stores the current MLRPs while traversing.

Definition 3: (CML) Current Maximum Length
which stores the value of the length in MLQ.

B. Constructing the Graph

In this subsection, we describe the PJ method
to solve the mining maximum-length repeating pat-
terns problem. The PJ method calculates the fre-
quency of substring by using thep-join method,
instead of the string matching algorithm. The main
concept of the PJ method has two steps: first, we
construct a directed graph. Second, we traverse the
graph to find out the MLRPs.

In the constructing graph phase, as shown in
Figure 5 line 5 and in Figure 6, we use the music
sequence to construct a directed graph, and traverse
the directed graph to find out the longest satisfied
paths which stand for maximum-length repeating
patters. Let music sequenceS = 〈s0, s1, s2, ..., sn〉
with length n, and a two dimensionalm × m
modified adjacent matrixAdjT , wherem is the size
of alphabets. The modifiedAdjT is used to store the
start position of each repeating pattern with length
two.

First, for every two continuous symbolssi and
si+1 (0 ≤ i ≤ n − 1) of music sequenceS,
we add its start positioni into AdjT [si][si+1].
In detail, we scanS and get the foremost sub-
string 〈s0, s1〉, and then we add its start position
0 into AdjT [s0][s1]. Next time, we get the sub-
string 〈s1, s2〉 and add its start position 1 into
AdjT [s1][s2], and so do substring〈s2, s3〉, 〈s3, s4〉,
..., 〈sn−1, sn〉. For each element inAdjT , the num-
bers are in order. As shown in Figure 7, the position
sequence ”4, 17, 24, 25, 26, 27, 42 ” is in order.

Second, after all substrings have been processed
and inserted into theAdjT , we use the matrixAdjT
to construct the graph as follows. For each element

1: Procedure PositionJoin (S);
2: /* Input: A music sequenceS. */
3: /* Output: The set ofMLRP . */
4: begin
5: For every two continuous symbolsx, y of S,

insert theposition into Adjacent matrix
AdjT [x][y]; If Count(AdjT [x][y]) ≥ 2, create
a vertexx linking to y, and the graphG
could be constructed;

6: MLQ := φ;
7: MLQ.max length := 2;
8: CurrentPathCP := φ;
9: for each Vertex V Start ∈ G do

/* Start to Traversing the Graph */
10: begin
11: V start.checked := false;
12: CP.length := 2;
13: TraverseG(V start, CP);
14: V start.checked := true;
15: end;
16: for each MLRP ∈ MLQ do
17: outputMLRP ;
18: end;

Fig. 5. ProcedurePositionJoin

AdjT [x][y], where1 ≤ x ≤ m and 1 ≤ y ≤ m,
we count its numbers to decide its frequency. If it
is greater than or equal to two, which means that it
is a repeating pattern, we create two vertexes and
an edge, where the vertex with valuex links to
the vertex with valuey. Here, we need to notice
that each edge in the graph is a directed edge. An
example of the input Figure 4 is shown in Figure
7. Each edge in the graph is a directed edge. The
dotted line represents that the edge inG corresponds
to its position in the music sequence. For example,
the edge〈F → D〉 appears in positions 3, 6, 41 in
the music sequence.

The conceptual graph is shown in Figure 8.
In implementation, we do not create the edges
which store the positions because it will have du-
plicated information corresponding to theAdjT .
For example, if we need the information of edge
〈F → D〉, we can get the information by accessing
AdjT [F][D].

C. The P-Join Method

In the p-join phase, thep-join method calculates
whether two repeating patterns can join together
to become a new longer repeating pattern by their

music sequence
s0s1...sn

add i into
AdjT[si][si+1]
(i = 0~n-1)

For each element in AdjT,
If Count >= 2

Create a vertex x
linking to vertex y

graph G
Yes

No

For each vertex
VStart in G as

originate vertex

Vnext is
checked

Yes

path can p-join
terminal vertex

create new
terminal vertex
linked by VStart

path can
 p-join Vnext

Yes

add Vnext to path

No

Yes

path have
next vertex

Vnext
No

No

all vertexes have
been originate

vertex
No

Result

Yes

Path.length
 > CML

add path to MLQ
Constructing the Graph

Traversing the Graph

Fig. 6. The flowchart of the PJ method

C

D

EF

G

C D E F G

C 6 19,44

D 5,18,43 4,17,24,25,26,27,42 7,28

E 23 1,14,31,32,33,34,392,8,15,29,35,40 20,45

F 3,16,41 30 9,36

G 47 0,13,22,38 10,11,12,21,37,46

Fig. 7. The matrixAdjT and the graph for song ”Little Bee”

C

D

EF

G

EG(DC)={5,18,43}

EG(DD)={4,17,24,25,26,27,42}

EG(EE)={1,14,31,32,33,34,39}
EG(EF)={2,8,15,29,35,40}

EG(CE)={19,44}

EG(GE)={0,13,22,38}

EG(EG)={20,45}

EG(DE)={7,28}

EG(FD)={3,16,41}

EG(GG)={10,11,12,21,37,46}

EG(FG)={9,36}

Fig. 8. The conceptual graph for song ”Little Bee”

positions. The concept of thep-join method is that
a substringY can append at the tail of another
substringX if the first symbol ofY and the last
symbol ofX have the same position. For example,
given substring ”ABCD” starting at position 0 and
substring ”DC” starting at position 3, then the tail
position of substring ”ABCD” is 3 and it is equals
to the start position of ”DC”. These two substrings
can join together.

Assume that a substring (or pattern)X is
represented as{xp1, xp2, xp3, ..., xpn : xlen}.
A substring (or pattern)Y is represented as
{yp1, yp2, yp3, ..., ypm : ylen}. We define that sub-
string X can p-join substringY as follows. There
are two steps.

Step 1: Create the candidate repeating pattern.
For each position inX, in order to get the tail posi-
tion, we addxlen-1 to it and getX ′={xp1+xlen−1,
xp2+xlen−1, xp3+xlen−1, ... ,xpn+xlen−1}. We
examine whether there is the same value between
X ′ and Y , and store its corresponding value ofX
to a candidate pattern (abbreviated ascandRP). In
other words, ifyi=xj +xlen−1 (i ≤ m andj ≤ n),
we add its positionxj into candRP .

Step 2: Check the candidate repeating pattern.
The p-join method needs to check whether the
candidate repeating pattern is a repeating pattern
or not. As previous discussion, a repeating pattern
needs appearing in the music sequence at least
twice. We calculate the frequency of thecandRP
by counting the number of positions incandRP .
Between the count and two, there are two cases
needed to be considered. For Case 1: if the count is
less than 2, thecandRP is not a repeating pattern.
For Case 2: if the count is greater or equal to 2, we
assume that the first start position of thecandRP
is xp1 and the last start position isxpn. (1) If xpn-
xp1 is greater or equal to the sum of the length of
X and the length ofY (i.e., xlen+ylen-1), then the
candRP is a repeating pattern with length equals to
xlen+ylen-1. (2) If xpn-xp1 is less thanxlen+ylen-
1, it means that there is an overlap incandRP , we
modify the length ofcandRP to xpn-xp1. If length
of candRP equals to length ofX, the candRP
is not a repeating pattern. If length ofcandRP
is greater than the length ofX, the candRP is a
repeating pattern.

D. Traversing the Graph

In the graphG, each pathP can be considered as
a possible repeating pattern, since all its sub-paths
of length two (i.e., the directed edges) are repeating
patterns. The set of all possible paths ofG forms the
search space of the examined problem. We traverse
G by searching for the paths that originate from
any of its vertices, and use the depth-first manner
to traverse the graph in order to find the path as
long as possible.

As discussed before, we use the format
RP (path) : {p1, p2, ..., pn : plen} to represent the
current path. Procedure is shown in Figure 5, lines
6 to 15, Figure 6 and Figure 9. Initially,CML is
set to 2,MLQ is set to empty, and all vertexes are
setting unchecked. While the PJ method traverses
the graphG, the current path visits the next vertex
and calculates whether the current path can continue
to visit the next vertex or not. We use thep-join
method. If the current path canp-join the edge, it
means that it can be a repeating pattern, then we add
the vertex to the current path and compare its length
to CML. There are three cases: (1) The length of
the path> CML. (2) The length of the path=
CML. (3) The length of the path< CML. For
Case 1, it means that the current path has longer
length than MLRPs in MLQ. Therefore, we clean
MLQ, add the path to MLQ, and setCML equals
to the length of the path. For Case 2, the current
path has length equals to MLRPs in MLQ, so we
add the path to MLQ and continue to visit the next
vertex. For Case 3, we just continue to visit the next
vertex.

Each time, when the path can not visit the next
vertex anymore, we set the original vertex checked,
and create a terminal edge which stores the path and
the length of the path. The terminal edge is linked
by the original vertex. The terminal edge is used to
avoid the case that we traverse the same path. In
other words, in the traversing step, when traversing
the vertex which is the formerly original vertex, as
shown in Figure 9 line 16, we only calculate its
terminal edges whether the current path canp-join
them. Otherwise, we still use the depth first search
to traverse the graph.

When the PJ method has ended all the traversal,
MLRPs in MLQ are all answers, as shown in Figure

1: Procedure TraverseG (V, CP);
/* V : V ertex, CP : CurrentPath */

2: begin
3: for each Vertex V next ∈(V → V next) do
4: begin
5: if V next.checked = false then

/* Case 1: Vertex is not checked */
6: if CP canp-join Enext then
7: begin
8: store satisfied position toCP.position;
9: CP.length = CP.length + 1;

10: TraverseG(V next, CP);
11: end
12: else
13: create a new terminal edgeEnew

Constructed byCP ;
14: end
15: else

/* Case 2: Vertex is checked */
16: for each V next → V new do
17: if CP canp-join Enew then
18: begin
19: store satisfied position to

CP.position;
20: CP.length = CP.length +

V new.length - 1;
21: create a new terminal edgeEnew

Constructed byCP ;
22: end;
23: end;
24: end;
25: end;
26: if CP.length > MLQ.max length then
27: begin
28: cleanMLQ;
29: addCP to MLQ;
30: MLQ.max length := CP.length;
31: end
32: else if CP.length = MLQ.max length then
33: addCP to MLQ;
34: end;
35: end;

Fig. 9. ProcedureTraverseG

5, lines 16 to 19. From Figure 10 to Figure 14 are
the process of traversing the graph of Figure 8. For
each figure, (a) is the process of traversal from the
original vertex; (b) is its terminal edges after being
ended the traversal from the original vertex, and the
double circled means that the vertex set checked; (c)
is the current MLQ and CML; (d) is the conceptual
graph which after the original vertex set checked.

C

E

GFE

GE

C

EGG

G E

(a)

(b)

xx

x

x x

TE:{19,44:4}CP :{19,44:2}

CP :{19,44:2}
P-Join
EG(EG) :{20,45:2}
= CP :{19,44:3}

CP :{19,44:3}
P-Join
EG(GG) :{10,11,12,21,37,46:2}
= CP :{19,44:4}

CP :{19,44:2}
P-Join
EG(EE) :{1,14,31,32,33,34,39:2}
= CP :{ : }

MLQ : {<19,44:4>}
CML : 4

(c)

D

EF

G

EG(DC)={5,18,43}

EG(DD)={4,17,24,25,26,27,42}

EG(EE)={1,14,31,32,33,34,39}

EG(EF)={2,8,15,29,35,40}

EG(GE)={0,13,22,38}

EG(EG)={20,45}

EG(DE)={7,28}

EG(FD)={3,16,41}

EG(GG)={10,11,12,21,37,46}

EG(FG)={9,36}

(d)

EGG

{19,44:4}

C

terminal edge (TE)

unchecked vertex
checked vertex

edge (EG)

Fig. 10. The process of traversing the graph: (a) traversal of original
vertex C; (b) the terminal edge ofC; (c) MLQ and CML; (d) the
conceptual graph.

Finally, the information in theMLQ is the an-
swer. In Figure 14, the answer is{< 12, 37 : 11 >}.
The pattern appears in positions 12 and 37 with
length 11 in Figure 4 is ”GGEEFDDCEGG”, and it
is the maximum-length repeating pattern.

E. The Terminal Edge

In the PJ method, in order to avoid repeatedly
traversing some paths, we propose the concept of
creating terminal edge. Initially, all vertexes in the
graph are setting unchecked. We start to traverse the
graph from any of its originate vertices. Each time,
when the current pathCP visits the next vertex and
can p-join the edge, then it means thatCP can
still down traverse, because it is not the terminal.
If all next edges ofCP can not bep-joined, then
we create a terminal edge and store the information
of CP . After the original vertex has been traversed,
the original vertex is set checked. An illustration is
shown in Figure 15.

D

D E

D E FEGG

EGG

DCEGG

CEGG EFTE:{17,42:6}

TE:{18,43:5} TE:{7,28:3}

D G

E G

(a)

(b)x x

x x

x x

CP :{5,18,43:2}
P-Join
TE(EGG) :{19,44:4}
= CP :{18,43:5}

CP :{4,17,42:3}
P-Join
TE(EGG) :{19,44:4}
= CP :{17,42:6}

MLQ : {<17,42:6>}
CML : 6

(c)

EF

G

EG(EF)={2,8,15,29,35,40}

EG(GE)={0,13,22,38}

EG(EG)={20,45}

EG(FD)={3,16,41}

EG(GG)={10,11,12,21,37,46}

EG(FG)={9,36}

(d)

EGG

{19,44:4}

C

C

C

D

DCEGG

CEGG

EF

{17,42:6}

{18,43:5}

{7,28:3}

D

EG(EE)={1,14,31,32,33,34,39}

Fig. 11. The process of traversing the graph: (a) traversal of original
vertexD; (b) the terminal edges ofD; (c) MLQ and CML; (d) the
conceptual graph.

E

E F G

E F G

G

G

GE

G E

GE

G EDCEGG

DCEGG

FDDCEGG
FGG

EFDDCEGG GG

TE:{15,40:8}
TE:{8,35:4}

TE:{14,39:9} TE:{20,45:3}

(a)

(b)

x

x x

xx x x

x x

MLQ : {<14,39:9>}
CML : 9

(c)

F

G EG(GE)={0,13,22,38}

EG(FD)={3,16,41}

EG(GG)={10,11,12,21,37,46}

EG(FG)={9,36}

(d)

EGG

{19,44:4}

C

DCEGG

CEGG

EF

{17,42:6}

{18,43:5}

{7,28:3}

D

D

D

E

FDDCEGG
FGG

EFDDCEGG

GG

{15,40:8}

{8,35:4}
{14,39:9}

{20,45:3}

E

Fig. 12. The process of traversing the graph: (a) traversal of original
vertex E; (b) the terminal edges ofE; (c) MLQ and CML; (d) the
conceptual graph.

F

DCEGG

G

G

G

DDCEGG

TE:{16,41:7}

GG

(a)

(b)

x
x

x

TE:{9,36:3}

MLQ : {<14,39:9>}
CML : 9

(c)

G EG(GE)={0,13,22,38}

EG(GG)={10,11,12,21,37,46}

(d)

EGG

{19,44:4}

C

DCEGG

CEGG

EF

{17,42:6}

{18,43:5}

{7,28:3}

D

FDDCEGG
FGG

EFDDCEGG

GG

{15,40:8}

{8,35:4}
{14,39:9}

{20,45:3}

E

D

E

E

F

DDCEGG
{16,41:7}

GG
{9,36:3}

F

Fig. 13. The process of traversing the graph: (a) traversal of original
vertex F ; (b) the terminal edges ofF ; (c) MLQ and CML; (d) the
conceptual graph.

TABLE I
PARAMETERS USED IN THE EXPERIMENT

Parameters Meaning
Ls The length of the music sequence
Nc The note counts in the music sequence
Lmlrp The length of MLRP in the music sequence
Fmlrp The frequency of MLRP in the music sequence

IV. PERFORMANCE

In this section, we study the performance of the
proposed Position-Join method. We also make a
comparison with the M2P method. The simulation
was performed on an Intel Pentium Core2 Duo
2.66G Hz CPU computer with 1.99GB of RAM,
running Windows XP, and compiled by JDK 1.5.0.

A. Generation of Experimental Data

In order to evaluate the performance of the pro-
posed algorithm, we generate synthetic data sets
by different parameters and extract the music se-
quence from real music objects in the web site.

G

G

G

EFDDCEGG

GEEFDDCEGG

EEFDDCEGG

TE:{13,38:10}

EFDDCEGG

(a)

(b)
x

TE:{12,37:11}

MLQ : {<12,37:11>}
CML : 11

(c)

(d)

EGG

{19,44:4}

C

DCEGG

CEGG

EF

{17,42:6}

{18,43:5}

{7,28:3}

D

FDDCEGG
FGG

EFDDCEGG

GG

{15,40:8}

{8,35:4}
{14,39:9}

{20,45:3}

EDDCEGG
{16,41:7}

GG
{9,36:3}

F

E

E

G

GEEFDDCEGG

EEFDDCEGG

{13,38:10}

{12,37:11} G

Fig. 14. The process of traversing the graph: (a) traversal of original
vertex G; (b) the terminal edges ofG; (c) MLQ and CML; (d) the
conceptual graph.

A

B

CD E

F

G

D C GF

C EG

G

able to p-join

unable to p-join

A

BG

BDC BDFC

FC

(a)

(b)

Fig. 15. An example of the terminal edge: (a) traversal of original
vertexA; (b) the terminal edges ofA.

The first set of experiments was conducted on the
synthetic data sets, which a sequence with repeating
patterns. The parameters used in the generation of
the synthetic data are shown in Table I. There is
a sequence which has length equals toLs and the
note count isNc. The second set of experiments
was conducted on the real music sequence extracted

by the MIDI file music object in the web site
(http://content.edu.tw/senior/music/tnnn/%A5j%A
8%E5midi/midi.html). We use these data sets to run
our method, and compare the execution time with
the M2P method.

B. Synthetic Data

In this subsection, we create synthetic data to
compare the experiment results between the PJ
method and the M2P method. For the synthetic data,
as shown in Table I, the parameter (Ls) means that
the length of the music sequence which we used
as input. For example, as shown in Figure 4, the
(Ls) of ”Little Bee” is 49. The second parameter
Nc means that the number of different notes in
the music sequence. For example, if a song is
”Fa-Fa-Mi-Do-Re-Do”, we haveNc = 4. In the
MIDI file format music object, the range of the
note is between 1 to 128 as discussed previously.
The parameterLmlrp means that the length of
the maximum-length repeating pattern in the music
sequence. For example as shown in Figure 4, the
Lmlrp is 11 as discussed before. The last parameter
Fmlrp means that the times of MLRP appear in the
music sequence. For the same example, the MLRP
appears only in positions 12 and 37, so we have
Fmlrp = 2.

There are five cases: (1) keeping the values of
Ls, Nc, Fmlrp, and changing the value ofLmlrp;
(2) keeping the values ofLs, Lmlrp, Fmlrp, and
changing the value ofNc; (3) keeping the values
of Nc, Lmlrp, Fmlrp, and changing the value of
Ls; (4) keeping the values ofLs, Nc, Lmlrp, and
changing the value ofFmlrp; (5) comparing the
PJ method with using terminal edges and the PJ
method without using terminal edges.

For Case 1, we setLs = 1000,Nc = 30, Fmlrp =
2 and changing the value ofLmlrp in the music
sequence from 10 to 100. TheNc is set to 30,
because most of music objects is in the bound
of three Perfect Octaves (3×12). The experiment
results is shown in Figure 16. We find out that the
PJ method is better than the M2P method in each
Lmlrp. It is due to that the M2P method needs to use
the string matching algorithm (the KMP algorithm)
to calculate the frequency of patterns.

For Case 2, we setLs = 1000, Fmlrp = 2, and
changing the value ofNc from 30 to 50 to see the

0

200

400

600

800

1000

1200

10 20 30 40 50 60 70 80 90 100

ti
m

e
 (

m
se

c)

Length of MLRP (Lmlrp)

Length = 1000

M2P

PJ

Fig. 16. A comparison of the processing time under different values
of Lmlrp

impact of different values ofNc between the two
methods. The experiment result is shown in Figure
17. We find out that the PJ method is better than the
M2P method in eachLmlrp. It is due to that the M2P
method needs to use the string matching algorithm
(the KMP algorithm) to calculate the frequency of
patterns.

For Case 3, we setNc = 30, Lmlrp = 100,Fmlrp
= 2, and changing the value ofLs from 1000 to 5000
to see the impact of different length of the music
sequence between the two methods. We find out that
the PJ method is better than the M2P method in each
Lmlrp. It is due to that the M2P method needs to use
the string matching algorithm (the KMP algorithm)
to calculate the frequency of patterns. Moreover, the
execution time of both methods increases when the
length of the sequence increases.

For Case 4, we setLs = 1000, Nc = 30, Lmlrp
= 10, and changing the value ofFmlrp from 4
to 6 to see the impact of different frequency of
maximum-length repeating pattern between the two
methods. As shown in Figure 18, we find out that
the PJ method is better than the M2P method in each
Lmlrp. It is due to that the M2P method needs to use
the string matching algorithm (the KMP algorithm)
to calculate the frequency of patterns.

Finally, we consider the impact of terminal edges
in the PJ method. We compare two methods, the
first method is the PJ method with using terminal
edges, and second method is the PJ method without
creating terminal edges and each vertex is consid-
ered unchecked (abbrevedas PJ-woTE method). We
setnc = 30, Lmlrp = 100,Fmlrp = 2, and changing

10

20

30

40

50

60

70

80

25 30 35 40 45 50 55

ti
m

e
 (

m
se

c)

Note Count (Nc)

Ls = 1000

M2P

PJ

Fig. 17. A comparison of the processing time under different values
of Nc

20

30

40

50

60

70

80

3 4 5 6

ti
m

e
 (

m
se

c)

Frequency of MLRP (Fmlrp)

Nc = 30

M2P

PJ

Fig. 18. A comparison of the processing time under different values
of Fmlrp

the value ofLmlrp. The results are shown in Figure
19 and Figure 20. The PJ-woTE method needs to
execute more number of the p-join method than the
PJ method, because the PJ-woTE method just depth-
first searches the graph and has many duplicated
paths. Hence, the PJ-woTE method needs longer
execution time than the PJ method.

C. Real Data

In this subsection, we use real music objects to
compare the two methods. We employ the MIDI
file format. First, because the MIDI format have
16 channels, each channel may represent different
voices or different musical instruments, we choose
the main melody channel. Second, the main melody
channel is composed by many events, which in-
cludes information such as pitch, start time, end
time, etc. We keep only the pitch information of the
MIDI file format and get the pitch string. It means
that we keep only the main melody string.

0

50

100

150

200

250

0 2000 4000 6000 8000 10000

ti
m

e
 (

m
se

c)

Length of Sequence (Ls)

Lmlrp = 100

PJ

PJ-woTE

Fig. 19. A comparison of the processing time under different values
of Fmlrp

0

50

100

150

200

250

0 2000 4000 6000 8000 10000

n
u

m
b

er
s

o
f

p
-j

o
in

 (
K

)

Length of Sequence (Ls)

Count of p-join method

PJ

PJ-woTE

Fig. 20. A comparison of the number of counting RP

Different kinds of music objects contain distinct
characteristics and have distinct MLRPs. We use
different kinds of music objects as shown in Talbe
II. There are three types of music objects, classical,
modern, and nursery rhyme.

For the first real case, classical type, La Primavera
(Spring), the music object has length = 949, and
note countNc = 18. Figure 21 demonstrates the
execution time for varying the music object size,
which Nc is always 18 in each object size. More-
over, Table III depicts the length of the discovered
MLRPs with respect to the size of the music object.

TABLE II
REAL MUSIC OBJECTS USED IN THE EXPERIMENT

Type Song Composer
classical La Primavera(Spring) Antonio Vivaldi
classical Canon Pachelbel
modern Tears in heaven Eric Clapton
nursery rhyme Twinkle, Twinkle, Little Star Ann Taylor

0

50

100

150

200

250

300

350

0 200 400 600 800 1000

ti
m

e
 (

m
se

c)

Length of Sequence (Ls)

La Primavera (Spring)

M2P

PJ

Fig. 21. Case 1: A comparison of the processing time for music
”La Primavera”

TABLE III
CASE 1: LENGTH OFMLRPS vs. OBJECT LENGTH FOR MUSIC

”L A PRIMAVERA ”

Music object length 200 400 600 800 949
Length of MLRPs 29 30 30 51 56

For the second real case, classical type, Canon,
the music object has length = 1746, and note count
Nc = 32. We compare the execution time under
length 200 to 1746, as shown in Figure 22. The
reason that the PJ method has better performance
than the M2P method is discussed in the previous
section ”Synthetic Data”. As shown in Figure 22,
the longer theLs and Lmlrp are, the more time
consuming for both methods are.

For the third real case, modern type, Tears in
heaven, the music object has length = 2926, and note
countNc = 43. We compare the execution time un-
der length 400 to 2926, as shown in Figure 23. The
reason that the PJ method has better performance

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400 1600 1800

ti
m

e
 (

m
se

c)

Length of Sequence (Ls)

Canon

M2P

PJ

Fig. 22. Case 2: A comparison of the processing time for music
”Canon”

0

200

400

600

800

1000

1200

1400

0 400 800 1200 1600 2000 2400 2800 3200

ti
m

e
 (

m
se

c)

Length of Sequence (Ls)

Tears in heaven

M2P

PJ

Fig. 23. Case 3: A comparison of the processing time for music
”Tears in heaven”

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200 400 600 800 1000

ti
m

e
 (

m
se

c)

Length of Sequence (Ls)

Twinkle, Twinkle, Little Star

M2P

PJ

Fig. 24. Case 4: A comparison of the processing time for music
”Twinkle, Twinkle, Little Star”

than the M2P method is discussed in the previous
section ”Synthetic Data”. As shown in Figure 23,
the longer theLs is, the more time consuming for
both methods is.

For the fourth real case, nursery rhyme type,
”Twinkle, Twinkle, Little Star”, the music object has
length = 857, and note countNc = 45. We compare
the execution time under length 200 to 857, as
shown in Figure 24. The reason that the PJ method
has better performance than the M2P method is
discussed in the previous section ”Synthetic Data”.
As shown in Figure 24, the longer theLs andLmlrp
are, the more time consuming for both methods are.

V. CONCLUSION

In the paper, we have developed the PJ method
to mine maximum-length repeating patterns. We
have avoided to traverse some paths repeatedly in
traversing the graph step. From our performance
study based on the synthetic data and real music

data, we have shown that our proposed PJ method
is more efficient than the M2P method.

VI. ACKNOWLEDGEMENTS

This research was supported in part by the Na-
tional Science Council of Republic of China under
Grant No. NSC-87-2213-E-110-014.

REFERENCES

[1] I. V. Bakhmutova, V. D. Gusev, and T. N. Titkova, “The Search
for Adaptations in Song Melodies,”Computer Music Journal,
Vol. 21, No. 1, pp. 58–67, 1997.

[2] S. C. Chiu, M. K. Shan, J. L. Huang, and H. F. Li, “Mining
Polyphonic Repeating Patterns from Music Data Using Bit-
String Based Approaches,”Proc. of IEEE Int. Conf. on Multi-
media and Expo, pp. 1170–1173, 2009.

[3] D. Conklin, “Representation and Discovery of Vertical Patterns
in Music,” Proc. of Int. Conf. on Music and Artificial Intelli-
gence, pp. 32–42, 2002.

[4] J. L. Hsu, C. C. Liu, and A. L. P. Chen, “Efficient Re-
peating Pattern Finding in Music Databases,”Proc. of the
7th Int. Conf. on Information and Knowledge Management,
pp. 281–288, 1998.

[5] J. L. Hsu, C. C. Liu, and A. L. P. Chen, “Discovering Non-trivial
Repeating Patterns in Music Data,”IEEE Trans. on Multimedia,
pp. 311–325, Sept. 2001.

[6] I. Karydis, A. Nanopoulos, and Y. Manolopoulos, “Finding
Maximum-Length Repeating Patterns in Music Databases,”
Multimedia Tools and Applications, Vol. 32, No. 1, pp. 49–71,
Oct. 2007.

[7] C. C. Liu, J. L. Hsu, and A. L. P. Chen, “Efficient Theme and
Non-Trivial Repeating Pattern Discovering in Music Database,”
Proc. of the 15th IEEE Int. Conf. on Data Eng., pp. 14–21,
1999.

[8] N. H. Liu, Y. H. Wu, and A. L. P. Chen, “An Efficient
Approach to Extracting Approximate Repeating Patterns in
Music Database,”Proc. of Int. Conf. on Database Systems for
Advanced Applications, pp. 240–252, 2005.

[9] N. H. Liu, Y. H. Wu, and A. L. P. Chen, “Identifying Prototyp-
ical Melodies by Extracting Approximate Repeating Patterns
from Music Works,”Journal of Information Science and Eng.,
Vol. 26, No. 4, pp. 1181–1198, July 2010.

[10] Y. L. Lo and C. Y. Chen, “Fault Tolerant Non-Trivial Repeating
Pattern Discovering for Music Data,”Proc. of Computer and
Information Science, IEEE/ACIS Int. Workshop on Component-
Based Software Eng., pp. 130–135, 2006.

[11] Y. Lo, W. Lee, and L. Chang, “True Suffix Tree Approach for
Discovering Non-Trivial Repeating Patterns in a Music Object,”
Multimedia Tools and Applications, Vol. 37, No. 2, pp. 169–
187, July 2007.

[12] D. Meredith, K. Lemstroumlm, and G. A. Wiggins, “Algo-
rithms for Discovering Repeated Patterns in Multidimensional
Representations of Polyphonic Music,”Journal of New Music
Research, Vol. 31, No. 4, pp. 321–345, 2003.

[13] E. Wold, T. Blum, D. Keislar, and J. Wheaton, “Content-Based
Classification, Search, and Retrieval of Audio,”Proc. of IEEE
Multimedia, pp. 27–36, 1996.

